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Abstract. We consider a random feld &), t={t,, t)eR?,
having mean valse zero and the correlation function B, ©)
= Blty, ty, Ty, To) = BE(t, +1,, t5+1,)€(t,, £3), which is periodic in
the sense that B(t,+ Ty, t,+ T, <) = B, + T}, t,, 1) = B{t;, 15, 7)
(here the periods T) and T, are positive). It is shown that under broad
conditions the spectral decomposition of the correlation function
B(t, 1) is represented by the countable set of spectral densities
JinlAas ), where (g, j3) € Z* and (4;, A,)e R®. For the case where the
random field under consideration is Gaussian, nonparametric es-
timates of the spectral densities /] ; (4;, A,) are introduced and studied.

A random process £(t), teR, is called periodically correlated (or cyclo-
stationary) with period T > 0 if its mean value m(f) = EE(t) and correlation
function

B(t, ) = E{[{(t+)—mit+ )] [£(t) —m(#)]}

are periodic functions of t with period T > 0. The periodically correlated
random processes (and also slightly more general periodically nonstationary
processes) are studied, e.g., in [1-4, 7], [5], Section 59, and [6], Section 26.5.
Generalization of the concept of a periodically correlated random process to
random functions of two variables leads to the concept of a periodically
correlated random field. A random field &(r), t = (¢,, t;)e R?, is called periodi-
cally correlated with periods T, and T, if its mean value m(t) = E{(f) and
correlation function

B(f, T) = B(tla 12! Tis fz)
= E{[&(ty, t)—mity, t)I[E(t, + 7y, to+T)—mlt +1Ty, o +T)]}
are periodic in the following sense:

mty+ Ty, t,+ ) = mlt, + Ty, £5) = mity, 1)
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and
B(t,+ Ty, t,+ Ty, ©) = Bty + T4, £y, 1) = Blty, L5, 7).

It will be shown that the spectral decomposition of the correlation
function of a periodically correlated random field can be described, as in the
case of a periodically correlated random process, by the countable set of
spectral densities. In this paper the most attention is given to the study of
nonparametric estimates of the spectral densities for Gaussian periodically
correlated random fields.

Let &(f) = &(ty, t,) be a Gaussian real-valued periodically correlated
random field, which has mean value zero and correlation function

(1) B(tga tga T1s ‘Tg)’ = Eﬂtl + 1Ty, t2+T2)‘:(I1a £5),

that is periodic in t, and ¢, with periods T, and T, respectively. In what
follows we assume that for any t=(t,, t,) the function B{t,7) can be
represented by its Fourier series

Bty, 1, 1) = ), ¥, Bjp(t)e e,

J182 j=Z
where w, =2n/T,, k=1, 2, and

Ty Ta »
(2) Bjpm=(Ty )" E dt, E exp[—ilf, w1, +j,0,1,)1B{t,, t,, T)d1;.
o 0
Assuming that the functions |Bj;(z,, 1,)| decrease rapidly enough as
12413 - 00, we obtain '

(3)  Blty, by, 1y, T) = ), Z expli(jy oty +iy0,15)]

JieZ jaeZ

x [ fexplildy 1, + 4,701 [, (44, A)dA dA,,

where'
@) fipldys 4) = 2r) "2 [ fexp[—i(A; 1, + 4,701 By plty, T)dT, dry
: T: T2 .
0 4]

x [ fexp[—i(A, 7, + A, 1)1 By, ts, 7y, Ty)d7,d7,.

Here (and in the sequel) the integral without integration limits denotes the
integration from —oo to + 0.

The spectral densities fj,;,(A), 4 = (4,, 4,), defined by (4), are generally
complex and satisfy the conditions

(5) j};jz(‘li: }'2) = f—jh‘“jg{“;‘h _;“Z)( = .ﬁ"xk(j! @y Wli.ﬁjimEM’E‘Q)'
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However, it follows from (5) that the density fyo(1) is always real. Let us
show that fy0(4} is also a nonnegative function, and therefore it has all the
properties of the spectral density function of a homogeneous random field in
the plane. By (4), for proving the nonnegativity of f,o(4), it is sufficient to show
that the function Bge(r) is nonnegative definite, i.e. that the following two
relations are valid:

(1) Boo(—7y, —72) = Boolzy, 12)

(i) for any neN, t;=(1;;, 1p)eR” and c,eR, j=1,...,n,

1 )

> E ¢, ¢ Boolt,—1) = 0.

k=11=

The relation (i) follows easily from the definitions of B(t, t) and Byy(z).
Moreover, using definitions (1) and (2) and the periodicity property of B(t, 1),
we obtain

# f n "

Z Z e ¢ Boolt,—1) = Z Z e, Boo(thy —Tigs Thz —T12)

k=1t=1 k=11=1
i 14 2
L
= dt, | B(t,, ty, Toy —Tir, Tz —T12)dt,
kL‘z:l lZlT TE J 1 £ 1 k1 i1 k2 2
" 1 T'@
Z Z (T Tt _fdtx ;f B(t, +111, ty+ T2, Toy —Tras Tha —Ti2)dl,
k=11=1
n n Ty
=Y Z (T, Tt jdfl j E[E(t, +Ty, 15+ 1) E(ty + 10, 1o+ 1)1t
™

T; T2 #

=(I,T,)" j‘dfa jEl ‘Z &ty + 1, to+u)Pdt, 2 0.
k=

Hence the relation (i} is also valid,

In the study of statistical estimation of the spectral densities f},;,(4) it
seems to be natural to assume that the random field £(¢) is harmonizable in the
sense of [2], Section 4, and, consequently,

© Y % Tl Aplid, ks < co.

e jaed

However, it will be more convenient, instead of {6) to take the following
assumption:

(7 S'upifi}j‘z(l]l € Kk.fljl’ z z K.i’sz =K < 0.
i

J16Z jaeZ
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Conditions (7) are clearly not too restrictive. It follows from the Fourier
series theory that they are fulfilled if:

(i) for any teR? [[|B(, 1y, ty)ldr,dt, < 4w’ Koo;

(ii) for any AeR? and AseR the functions’

gi(s: Ay, Ay) = (@n2T,)~ [Hs:‘i”‘ 1¥izldr de, j' Bs, t, T4, T,)d1]
and

gy(85 Ays Ay) = (402 T})™ D femhmrhmlgy dr, f B(t, s, T, 7,)dt]

satisfy the condition
lgis+4ds; H—gls; H < Cylds|™,  j=1,2,

where a;€(0, 1] and C; < o0;
(iii) for any AeR? and (4t,, 4t,)e R? the finite differences

Alty, t,y, Ay, At;)
= g(t, +At,, t,+At)—glty + ALy, t,)—glty, t,+At,)+glE, L)
of the function
glty, 1) = g(ty, 5 245 4o)
'*2

=@~ Ot 0ty

[Ejg*ﬂ-llt:%-ﬁzu)B&U tyy Ty Tz)dfj.‘ﬁﬂ

satisfy the condition
[A(ty, ta, 48y, A1) < Cyldt AL,
where a,€(0, 1] and C, < .

Henceforth we denote the random field under consideration and its
observed realization by the same symbol £(f). As an estimate of f,,,(4), where
(ky, k,)eZ* and AeR? we consider the random variable
® A0, 1)

= (8n2) "1 [[exp(—i(A, 1, + A, 7,)) +exp(— ik, 0, — Ay) 7y —ilky , — 25)75)]

x W(ht ) W(ht,) BOEN(,, t,)dt, dr,

2

(klma —24 1}11 (ky w0, —
7

e

=l exp( a1y “‘""2”2“) W (o) W ()

-2 . , o
2)% BE¥pNa(r, 1)dr dr,y,
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where

) ﬁ&za?t T,)
Ty Ta
=(,Ty)* _‘ dt, ._. exp[ ~i(k,w, 1, +fa¢§§%§rz&?i tys Ty, To)dE,,
¢] 1]

(toy B™ “zu;n: 25 Tys Tp)

= M M zpzmwlm?i]bﬁifﬁ?wu+huﬂm+ﬁmvm5+ﬁHfamniwﬁr

=Ny lg=~Nz
(11) mo=2N,+1, k=1,2,
h = h(N,, N,) is a sequence of positive numbers such that h+(h*N,N,) 1 =0
as Ny N, - o, and W(x), xe R, is a weighting function satisfying the conditions
(12) W) =1, W(-—x)=W(x),
(13) W) =0 if |x| =

An even integer r > 2 will be called the order of the weighting function
W(x) AE, m,a E.amw. &, aﬁm statistical estimate (8)) if W(x) satisfies the following

(i) me derivative Sac; D(x) exists for all xeR and is square integrable;

(i) WOO0)=0,I=1,...,r—1, W"(0) 0.

We shall not consider the weighting functions W(x) which do not satisfy
the condition [[W®(x)]%dx < co.

By the convolution theorem for the Fourier transforms, the estimate (8)
can be also represented in the form

-2 -
(1) Sy, 2a) = QR I gy )| w( 20w (B2

h , h
~k,w;+4 —k, 0,4+ A ‘
w ,Ei _w 1T, Ha M 2 T4y du, d,.,
where
A8 I, Ay) = Q)72 et BN o), dy,

w(d) = (2n) ! w e W (x)dx.

=1
Moreover, conditions (12) imply that
(16) w(—)=w(), [wdi=1.

Supplementary conditions (i) and (ii), imposed on the r-th order weighting
function W(x), lead to the formulae

a7 A2 22 () dA < o
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and

(18) [Aw@di=0, 1=1,r—1, [Xw(l)di=0,

respectively. Note also that the continuity of the r-th order weighting function
W(x) and the assumption (13) imply that

(19) [W2(A)di = 2m) "L [W3(x)dx < co.

A rather simple sequence of the r-th order weighting functions W.(x),
r=2,4,..., can be described by the formula

- :(Imxr‘]r%ﬂz, ixi <1,
W) = {0, x| > 1

~ Tt is clear that the estimate (8) of the spectral density fi ;,(1) depends only
on the values of the realization £(t) in the rectangle

A= {(tl, ) tye{—=NyT,—1/h, (N +1) Ty + 1/!;),
Ly E{“‘Nz T,—1/h, (N, +1) T+ 1/h)},
which is expanding infinitely (along both coordinate axes) as N, N, co.

THEOREM. Let the spectral densities fj,;,(A), (., j,) € Z2, satisfy conditions (7)
and assume that the real and imaginary parts of the spectral density fi ., (4),
which is to be estimated, have the bounded partial derivatives of all the orders we
are interested in. Then the r-th order estimate (8) of the spectral density f 1, (1)
satisfies the asymptotical relation
Efa D) ~fea (P = O((N N, D)

1)

if h = B(N,, N,) is chosen to be proportional to (N, N,)~V**2 g5 N\ N, - 0.

Proof. It is easy to see that equations (15), (9), (10), (1) and (4) imply that
I4Y(A) = fiu,(4). Therefore it follows from (14), (5) and (16) that

wf N
BLANNI Ay, 4,01 = EAAAN Ay, o) —fraialhas A)

Hy—kyo,+4 py—kywy+ A
- zhz-l'.’-ﬁﬁlkz(#la .“2)[ ( ! lh 4 ‘l)w( 2 zh,z 2)

-4y
+w(“l . )w("‘z - )}dulduz ke 1)

— Ay
= h“;’”W(‘ul A ) (#2 )[ﬁcxk (15 1) —=Jespa(Ays A2)1dpydpy.




Spectral density estimates 163

Hence, expanding fi,., (¢, i1,) into the Taylor series in the neighbourhood
of the point (4,, 4,) and taking into account assumptions (18), we obtain

2M, I

(20) lb[ﬁﬁéwﬁ(in AN < T IflW(l-’-l)W(ﬂz)](l#zi"”!Mzi)”dﬂldﬁzs

where M, is the upper bound of the absolute values of all the r-th order partial
derivatives of the real and imaginary parts of the spectral density fi .,{4,, 4,).
It is now easy to show that

(21) j_ﬂw(ﬂi}w(ﬂz)i(iﬂli'f'k#zf)rdﬂxd!’—z < o
(22) flii'wldi < 0, 1=0,1,...,r.

For Ae R let ¢(A) = min[1, |4|~!] and ¢(4) = max[1, |A"**]. By Cauchy’s
inequality we find that for any I=0,1,...,r

23)  [J1AwdA] < [f oDy DIw2)di]?
< (Y2 ()w? (DA [ o*(dp = 4 [P (Dw(DdA < 41+ 27T w?(A)dA.

Moreover (23), (17) and (19) imply (22) and (21).
Let us now consider the variance of the estimate (8). Clearly,

(24) Var{ﬁﬁé’mﬁ(‘% yAJI=E Iﬁg&"%){v‘lm Az}lzmlﬁfﬁﬁﬁé’“(iu A

- 1 | Ky, k0,1, )
= GE TR ”exp<~—x 7 Wiht,)
20T+ . — ‘
x W (ht,)cos (kyoy —22)7, + (ks 0, —205)7 dt,dv,

2

2

x [ { W(ht) W (hz,)co

g0, TaHh,0,1 LE I
xexp(z 113" 2 2% \duydr, [ e Mmiegy,
: .

2
T, Ty T2
% J‘ &“lkzmgrgdtz i’ eik;wﬂjdrs jﬁikzmzfq
o [ 0

X {E [B{NI’NZ}(tﬂ_s t:a "717 tz)BCNhNZ)(tBJ 14: 7’-35‘ T4)}

—EBWoNO(p, 1y, 7y, 1) EBNN iy, 1, 15, 1)}ty
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By definition (10) and the Gaussianity assumption, we also obtain
E[BNNI(ty, t5, T4, 7,) BN (15, 1y, 15, 1,)]
MEB‘”“MHI, ty, Ty, TV EBN VNI, 1, 14, 7,)

= z % i Z (n, ”z)~

b= —Ny = ~Nply= =Ny la= — N,
X{E[E(t + 1, Ty, to+ L e + 1 Ty 41y, ty+ L, Ty +15)
XA+ T, t+ L Tt + Ty + 14, 1+ 1, T+ 14)]
—ES(t + 1 T, ta+ LTS + 1 Ty 41y, 1+ T,+1,)
x Eé(t,+1, T, t4+£4'1‘,)§(r3+! Ty +1q, tya+1, T, +1,)}

=§j 5O Y ny

==Nil=—Naly=—Ny 4=~ Nz
X [Bty, ty, ty—ts+(l; — 1) Ty, ty—t,+(,—1)T))
XB(ty +7y, ty+75 ty— 1+ =1 T+ 13—14, ta—ty +{l,— L) Ty +7,— T,)
+B(ts, ty, t; =t +(, 1) T, F1y, =+ (=) T+ 7,)
X By, tas ty—ty + (= 1) T +75, ta—t, + (L — L) T +74) .
Using now (3) and performing some rather simple transforms, we find that
(25)  E[B™eM(t, 1y, 1y, 1) BV N1y, 1, 75, 7]
—EBMoNI(g, 1, 1, 1) EBN N, g, 1, 1,)

— Z gihots z" glizwata Z giisoiia Z Eij:zwzujj’ gl —ti +ea) ginalta =tz + 1)
162 Jz2eZ ez jaeZ

sin®[n, T (1 — j11)/2] sin? [n, To (s — po)/2]
X fi , Wo)dp, d ~1-173 - :
sl H2)dpty ﬂz”n%smz['l“l(;aan—yl)ﬂ] nisin® [T, (1, — 11,)/2]

% [ei(.ixmi “ﬂx)raei(jzznz ~pajta + gilians +;4m)]atm{ra —13)gipaltz ~ta} f:, 3;‘q(ﬂ‘3= Hc;) d By d Iy

Comparing now (24) with (25) we can write the variance of the estimate (8)
in the form

Var[ g ()] = Vi(N 1, Np)+V5(Ny, Ny),

where V(N,, N,), I =1, 2, is the summand produced by the l-th summand
term in the last brackets entering the right-hand side of (25). In particular,

(k wl""zﬁ }Tl { 20}2“‘2& )Iﬂv
2

X Wiht )W (ht,)exp[ —ilk, w1, +k,0,1,)/2]dr, dr,

VN, No) = 5 feo
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s f oo Lr21 = 20)7s —;{kzmz =202)% e

T
x explilk, w13+ k,0,7,)/2]drydr, [ e™ ™0y,
]

T2 Ty T2
5¢ j‘ e—uhgm;i;dtz j‘ 6’1"““3‘&1{3 j atkzmzm
0 0 o

w Z ei.hmm Z eiizwztz Z ei’jm;ﬁs Z aijw‘zu s‘g‘f}j (4”19 #z)ez’m{tgmu +13~11)
J J Sz -
=4 j2eZ J3eZ JaeZ
v pibiz(ta =tz +ra =12} pilis@sts + jae212)
Xe glenm du,dp,

% ,” Sinz [n T (s —py )21 sin®(n, Th(p, — p,)/2]
" ni T7 sin® [Ty (uy — 11,)/2] 13 T3 sin® [ T, (py — 1,)/2]

X fia1(Hss pg)e3 1 ikt 10 ﬁﬂadm} dt,.

Integrating with respect to ¢, (I =1, 2, 3, 4), we obtain

Vl(Np Nz):?él?z Z Z Z(,_n}xﬂ’z

J18Z J26Z jieZ jasZ

X(= D[] fjasalbiss madits dpa §§ oo (15 102)
¢ { ﬁ Sfﬂ[ﬂa n(wa(km“.}g) + ﬂm—yﬂﬁ-l)f/‘z]
amn M T, (ky =1 )+ 1=ty 2)2

Sin{";zq;(w (ky+jas ) HH “ﬂac-)-:z)fz]} :
% % z! k2, & @ 'a\(~l1 £)1}I“ﬂ~,}.~ d d ,
”a?;(wa(ka*‘fmz)+#a“‘ﬂm+2)/2 ( Piria\tis Ha 1> By dp,

where
(26)  @splpys o) = [fexpl—ilpy oy +p, T, W (ht,)
x W(ht,)explio, t,(i, —k/2)+iw, T4 (5 — ky/2)]
x cosf{k, @, /2—A,)t, +(kyw,/2—A3)t,]dT, d,y,
@7)  Wltys ) = [ Jexpli(uy v + sy 7)1 W (he ;) W (h)
xexplitk, w13 +ky0,7,)/2]cos[(kyw,/2— A )ty +{ky,/2—A,)t,)dT,dT,.
Now, using the assumption (7) and Cauchy’s inequa]ity, we find that

2 — PAMS 112
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VNLNJI<S Y T Y T @nPnyny) !

j182 j2eZ jaeZ jueZ
X K1, K jsjs {” [y, uo)Pdpgdp,

ﬁ i 1 sin?[n, T{w,ky—J) + By to+ 2)/2] dp H}Uz
S 2, [Twuke—F) + ta— s 2]

{5 Fl@sg(ity, u)l*dpydu,

IE“. 1 sin? [n, T(0,(k, +jes2)+Ma— sz)fz]d }52
2mn, | Tf@u(katins2) +Ha—Has 2)/ 2]

WJML
=X XX Zén nn, T\ T,

J18Z jael jieZ jieZ

X [f Nojipliy o) dpydus [T vy, vo)l*dvydv, |12
Taking into account definitions (26) and (27) of ¢;, ;, (44, #t,) and ¥(z,, p,),
we get

KZ
s N €7+ ,vp)lPd
(28)  |Vi(Ny, Nyl 47{2“1”2]«1?}“5#’(*"1 Jdvydv,
K? ko, —2A)t +(kywy—24,)1, . .,
=n1nzT1?;55c052( 11 1) 12 22 2 EW‘z(hIl]WzihTz)(ifid'Eg
Kz L
ST 4,

z(k ®; =27, +kyw,— Zﬁz)tzd
2h

It can be similarly shown that [V,(N,, N,)| also does not exceed the
right-hand side of (28). Therefore

(29)  Var[fGe" (] < [V, (le NI +IV3(Ny, Nl
2K*
nlﬂzh LT

X 5 Wz(’fz]

[ W T;)&!TE

X j W2(z,) cos? {[(k, 0, —24,)7, +(kyw, —2,)1,1/2h} dv,.
-1

Since h = h(N,, N,)—0 as N, N, — co, and, by assumption, the function
W () is continuous, it follows from (29) that *
(30)  limsupn, n,h*Var[ fALY2(4)]

NyNa—+w

€ K,z {2—sign[ f: (22— k;w)* 1} j' W2(t)dz)>.
I\, =1 -1
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Now the theorem follows from the formula

EI S (D)~ fra (N = Var LI A1+ LAKE (D]

as well as from relations (20), (21), (30), (11) and the assumption that
h=h(N,, N, ""(N1Nz)”1mr+z) as N;N,— .
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